Name \qquad
A rational expression is an algebraic fraction that could have a polynomial in the numerator and/or denominator.

$$
\text { Ex. } \frac{1}{x}, \frac{x}{5}, \frac{x+2}{x^{2}-4 x+4}, \frac{2 x-6}{5}, \text { etc. }
$$

A non-permissible value or restriction is any value of the variable that makes the denominator equal to Zero.

$$
\frac{2 x}{x^{2}-x-20}=\frac{2 x}{(x-5)(x+4)} \leadsto \begin{aligned}
& \neq 0 \\
x-5 & \neq 0 \\
x & \neq 5
\end{aligned} \quad \text { and } \quad x+4 \neq 0
$$

Simplifying a rational expression means to cancel common factors from the numerator and denominator.

$$
\begin{gathered}
2(-10) \\
=-20 \\
5^{\prime}-4
\end{gathered}
$$

Multiplying Rationals

$$
\begin{aligned}
\rightarrow & =\frac{3(x-2)}{x(2 x+5)-2(2 x+5)} \\
& =\frac{3(x-2)}{(x-212)(2 x+5)} \\
& =\frac{3}{2 x+5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 x-6}{2 x^{2}+x-10} \\
& =3(x-2)
\end{aligned} \quad \begin{aligned}
& =\frac{3(x-2)}{x(2 x+5)-2(2 x+5)} \\
& =3(x-2)
\end{aligned} \quad \rightarrow \text { NPVS: } \begin{aligned}
x \neq 2 \\
x \neq-5 / 2
\end{aligned}
$$

$$
\frac{x^{2}+7 x+12}{x^{2}+4 x+4} \cdot \frac{x^{2}-x-6}{x^{2}-9}
$$

* Factor everything first, then cancel common factors before multiplying

$$
\begin{aligned}
& =\frac{(x+4)(x \neq 3)}{(x+2)(x+2)} \cdot \frac{(x-3)(x+2)}{(x+3)(x-3)} \quad \text { NPVs: } x \neq-2, x \neq 3, x \neq-3 \\
& =\frac{x+4}{x+2}
\end{aligned}
$$

Pre-Calculus 11

Dividing Rationals

$$
\begin{aligned}
& \frac{x^{2}+15 x+56}{x^{2}-3 x-54} \div \frac{x^{2}+6 x-16}{x^{2}+4 x-12} \\
= & \frac{(x+7)(x+8)}{(x-9)(x+6)} \div \frac{(x+8)(x-2)}{(x+6)(x-2)} \quad \text { (1) Factor }
\end{aligned}
$$

$$
=\frac{(x+7)(x+8)}{(x-9)(x+6)} \times \frac{(x+6)(x-2)}{(x+8)(x-2)}
$$

(2) multiply by the reciprocal
(3) cancel common factors \& write out NPVs: $x \neq 9,-6,2,-8$

$$
=\frac{x+7}{x-9}
$$

To add or subtract rational expressions we need a common denominator.

$$
\begin{aligned}
& \frac{4}{x^{2}+5 x+6}-\frac{5}{x^{2}-x-12} \quad \text { (1) Factor } \\
= & \frac{4}{(x+3)(x+2)}-\frac{5}{(x-4)(x+3)} \quad \text { (2) LCD: }(x+3)(x+2)(x-4) \\
= & \frac{4}{(x+3)(x+2)}-\frac{5}{(x-4)}-\frac{(x+2)}{(x-4)(x+3)} \\
= & \frac{(4 x-2)}{(x+3)(x+2)(x-4)}
\end{aligned}
$$

$$
=\frac{-x-26}{(x+3)(x+2)(x-4)}
$$

(3) NPVs: $x \neq-3,-2,4$

Pre-Calculus 11

Solving Rational Equations
(3)drop the denominator,
then expand \&simplity

$$
\begin{aligned}
& \frac{2 x+3}{x+3}+\frac{1}{2}=\frac{x+1}{x-1} \\
& \frac{(2 x+3)}{(x+3)} \frac{(2)}{(2)} \frac{(x-1)}{(x-1)}+\frac{(1)}{(2)} \frac{(x+3)(x-1)}{(x+3)(x-1)}=\frac{(x+1)(x+3)}{(x-1)(x+3)(2)} \\
& 2(2 x+3)(x-1)+(x+3)(x-1)=2(x+1)(x+3) * \text { FOll } \\
& 2\left(2 x^{2}-2 x+3 x-3\right)+\left(x^{2}+3 x-x-3\right)=2\left(x^{2}+x+3 x+3\right) \\
& 4 x^{2}-4 x+6 x-6+x^{2}+3 x-\underline{x}-3=2 x^{2}+\underline{2 x}+\underline{\underline{6} x}+6 \\
& \begin{array}{r}
5 x^{2}+4 x-9=2 x^{2}+8 x+6 \\
-2 x^{2}-8 x-6-2 x^{2}-8 x-6
\end{array} \\
& \begin{array}{l}
5 x^{2}+4 x-9=2 x^{2}+8 x+6 \\
-2 x^{2}-8 x-6-2 x^{2}-8 x-6
\end{array} \\
& 3(-15) \\
& 3 x^{2}-4 x-15=0 \\
& =-A^{5} \\
& =\underbrace{-A^{5}}_{-9}+5 \quad \underbrace{3 x^{2}-9 x+5 x-15}_{3 x(x-3)+5(x-3)=0}=0 \\
& (3 x+5)(x-3)=0 \\
& \underset{x=-\frac{5}{3}}{\downarrow} \quad \underset{x=3}{\downarrow} \\
& \text { (1) factor (can' } 7 \text { in this example) } \\
& \text { (2) LCD: }(2)(x+3)(x-1)
\end{aligned}
$$

