\qquad
A quadratic function can be expressed in the following forms:

$$
y=a x^{2}+b x+c
$$

$$
y=a(x-p)^{2}+q
$$

General Form
Standard Form (Vertex Form)
Solving Quadratic Equations:

1. Solve by factoring-factor the quadratic and set each factor equal to \qquad 0
2. Solve by using the quadratic formula (radicals must be left in lowest form)
3. Solve by completing the square -complete the square and solve for x
4. Solve by graphing -graph the parabola and find the x-intercepts.

Solve by Factoring Review:

Two terms

$$
\begin{array}{l|l|}
\begin{array}{l}
\text { Two terms } \\
\text {-difference of squares }
\end{array} & \begin{array}{c}
\text { Simple trinomial } \\
\\
x^{2}+b x+c
\end{array} \\
\text { ex. } 4 x^{2}-81=0 & \text { ex. } \\
(2 x)^{2}-(9)^{2}=0 & x^{2}-11 x+30=0 \\
(2 x-9)(2 x+9)=0 & -5 x-6=30 \\
2 x-9=0 \quad 2 x+9=0 & (x-5)(x-6)=0 \\
x=\frac{5}{2} \quad x=-\frac{-9}{2} & \begin{array}{ll}
x-5=0 & x-6=0 \\
x=5 & x=6
\end{array}
\end{array}
$$

Complex trinomial

$$
a x^{2}+b x+c=0
$$

ex.

$$
\begin{aligned}
& 2 x^{2}+x-6=0 \quad m n=2(-6) \\
& 2 x^{2}+4 x-3 x-6=0 \quad=-12 \\
& 2 x(x+2)-3(x+2)=0 \\
& (x+2)(2 x-3)=0 \\
& x+2=0 \quad 2 x-3=0 \\
& x=-2 \quad x=\frac{3}{2}
\end{aligned}
$$

When given an equation in the general form, the quadratic formula can always be used to solve a quadratic equation. Quadratic Formula
Ex. Solve $2 x^{2}-5 x-3=0$

$$
\begin{aligned}
& a=2 \quad b=-5 \quad c=-3 \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(-3)}}{2(2)} \\
& x=\frac{5 \pm \sqrt{25+24}}{4} \quad x= \\
& x=\frac{5 \pm \sqrt{49}}{4}
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{5-7}{4}=\frac{-2}{4}
$$

The expression \qquad $b^{2}-4 a c$

$$
\begin{array}{cc}
x=\frac{5+7}{4}=\frac{12}{4} & x=\frac{5-7}{4} \\
x=3 & x=\frac{-1}{2}
\end{array}
$$

discriminant , is called the among the types of possible solutions.

Number of Roots of a Quadratic Equation
The quadratic equations $a x^{2}+b x+c=0$ has:

- two real roots when $b^{2}-4 a c>0$
- exactly one real root when $\quad b^{2}-4 a c=0$
- no real roots when \qquad

To convert a quadratic from general form to standard form, we use a process called completing the square.
We can also solve a quadratic equation by completing the square.

$$
\begin{aligned}
& \text { Ex. } 2 x^{2}-12 x-32=0 \\
& 2 x^{2}-12 x-32=0 \\
& 2\left(x^{2}-6 x\right)-32=0 \\
& 2\left(x^{2}-6 x+9-9\right)-32=0 \\
& 2\left(x^{2}-6 x+9\right)-18-32=0 \\
& 2(x-3)^{2}-50=0 \\
& 2(x-3)^{2}=50 \\
& (x-3)^{2}=25 \\
& x-3= \pm \sqrt{25} \\
& \rightarrow x-3= \pm 5 \\
& x=3 \pm 5 \\
& x=3+5 \quad x=3-5 \\
& x=8 \quad x=-2
\end{aligned}
$$

