Name \qquad
Radicals are any expression involving the root sign:
coefficient $\longrightarrow 5 \sqrt[3]{2}$ index radicand

- An \qquad entire radical has a coefficient of one or negative one.

$$
\text { ex. } \sqrt{2},-\sqrt[3]{7}, \ldots
$$

- A __Mixed radical has a coefficient other than one or negative one.

$$
\text { ex. } 2 \sqrt{3}, 5 \sqrt[3]{11}, \ldots
$$

We can convert from mixed to entire radicals and entire to mixed radicals.
Ex. a) $\sqrt{98}$
b) $2 \sqrt{7}$
c) $\sqrt[3]{24 n^{7}}$

$$
\begin{array}{ll}
=\sqrt{49 \cdot 2} & =\sqrt{4} \sqrt{7} \\
=7 \sqrt{2} & =\sqrt{28}
\end{array}
$$

$$
=\sqrt[3]{8 \cdot 3 \cdot(n \cdot n \cdot n) \cdot(n \cdot n \cdot n) \cdot n}
$$

simplest form

$$
=2 n n \sqrt[3]{3 n}
$$

$$
=2 n^{2} \sqrt[3]{3 n}
$$

We can add or subtract like radicals by adding or subtracting their coefficients.

$$
\text { Ex. a) } \begin{aligned}
& 2 \sqrt{5}-3 \sqrt{7}+\sqrt{5} \\
= & 3 \sqrt{5}-3 \sqrt{7}
\end{aligned}
$$

b) $2 \sqrt{28}-5 \sqrt{7}$

$$
\begin{aligned}
& =2 \sqrt{4 \cdot 7}-5 \sqrt{7} \\
& =2(2) \sqrt{7}-5 \sqrt{7} \\
& =4 \sqrt{7}-5 \sqrt{7} \\
& =-\sqrt{7}
\end{aligned}
$$

We multiply radicals by multiplying coefficient by coefficient and radicand by radicand. We can divide radicals by dividing coefficient by coefficient and radicand by radicand. Answers must be in simplest form.

$$
\text { Ex. a) } \begin{aligned}
& 4 \sqrt{6} \cdot 3 \sqrt{2} \\
= & 12 \sqrt{12} \\
= & 12 \sqrt{4 \cdot 3} \\
= & 12(2) \sqrt{3} \\
= & 24 \sqrt{3}
\end{aligned}
$$

b) $\frac{18 \sqrt{2}}{3 \sqrt{14}}$

Rationalize the denominator

$$
\begin{aligned}
& =\sqrt[6]{\frac{2}{14}} \\
& =\sqrt[6]{\frac{1}{7}} \\
& =\frac{6 \sqrt{1}}{\sqrt{7}} \\
& =\frac{6}{\sqrt{7}}
\end{aligned}{ }^{=} \quad \frac{6 \sqrt{7}}{\sqrt{7}}
$$

Multiplying binomials: Use FOIL (First, Outside, Inside, Last)

$$
\begin{aligned}
& \text { Ex. }(8 \sqrt{6}+2)(\sqrt{2}-3) \\
& =8 \sqrt{12}-24 \sqrt{6}+2 \sqrt{2}-6 \\
& =8 \sqrt{4 \cdot 3}-24 \sqrt{6}+2 \sqrt{2}-6 \\
& =16 \sqrt{3}-24 \sqrt{6}+2 \sqrt{2}-6
\end{aligned}
$$

Rationalizing binomial denominators-we multiply by the conjugate.

- The conjugate of $a+b$ is: $a-b$
and vice versa

$$
\begin{aligned}
& \text { Ex. } \frac{5}{(2-\sqrt{3})} \cdot \frac{(2+\sqrt{3})}{(2+\sqrt{3})} \\
& =\frac{10+5 \sqrt{3}}{4+2 \sqrt{3}-2 \sqrt{3}-\sqrt{9}} \\
& =\frac{10+5 \sqrt{3}}{4-3}
\end{aligned} \quad=\frac{10+5 \sqrt{3}}{1}
$$

Solving Radical Equations

1. Isolate the radical
2. Square both sides
3. Solve for ' x '
4. Check for extraneous roots

$$
\text { Ex. } \begin{aligned}
& \sqrt{x+1}+3=5 \\
&-3-3 \\
& \sqrt{x+1}=2 \\
&(\sqrt{x+1})^{2}=(2)^{2} \\
& x+1=4 \\
&-1=1 \\
& x=3
\end{aligned}
$$

Check:

$$
\begin{gathered}
\sqrt{x+1}+3=5 \\
\sqrt{3+1}+3=5 \\
\sqrt{4}+3=5 \\
2+3=5 \\
5=5
\end{gathered}
$$

