
42

4.1 Properties of a Quadratic Function

- A quadratic function is a polynomial of the <u>Second</u> degree.
- The graph of a quadratic is called a parabola

Example #1: Sketch a graph of the curve $y = 2x^2 + 4x - 6$ on the grid and determine the characteristics listed below:

Vertex = the lowest point of the graph (if it opens up), and the highest point of the graph (if it opens down).	(-1,-8)
When the coefficient of x^2 is positive, the parabola opens up and its vertex is called the minimum . When the coefficient of x^2 is negative, the parabola opens down and its vertex is a maximum point.	minimum
Equation of the Axis of Symmetry = the equation of the line which intersects the vertex of the graph and divides the graph into two equal halves.	$\gamma = -1$ of vertex
y-Intercept = the point at which the graph crosses the y-axis. Note this is where $x=0$	(0,-6)
x-Intercept = the point at which the graph crosses the x-axis. Note this is where $y=0$	(-3,0),(1,0)
Domain = all possible values of x	XER
Range = all possible values of y	y > -8 y-coordinate of vertex

Sometimes the x-intercepts cannot be identified from the table or graph, so we need to find them another way. This can be completed by solving the quadratic equation by setting y = 0. Note that the x-intercepts of the graph of a quadratic function are called the zeros of the function because they are the values of x when the function is set to 0.

Example #2: Given the quadratic equation, $y = -2x^2 - 6x + 20$, determine the following, without graphing.

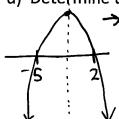
a) Determine the zeros of the graph. $\rightarrow \gamma = 0$

$$\frac{0 = -2x^2 - 6x + 20}{-2}$$

$$x=-6$$
 and $x=2$

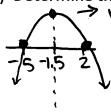
b) Determine the y-intercept $\rightarrow x=0$

$$y = -2(0)^2 - 6(0) + 20$$


c) Determine whether the vertex will be a maximum point or a minimum point.

coefficient of "x" is negative so graph opens

:. there is a maximum point.


d) Determine the axis of symmetry.

→ this is what we Know

Axis of symmetry is in the middle.
$$\frac{-6+2}{2} = -1.5$$

e) Determine the vertex of the graph.

$$y = -2x^{2} - 6x + 20$$

$$y = -2(-1.5)^{2} - 6(-1.5) + 20$$

$$y = 24.5$$
[: Vertex (-1.5, 24.5)]