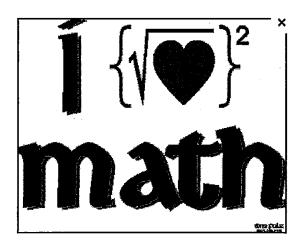


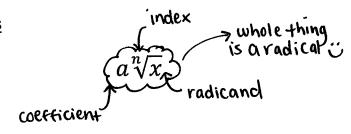
Chapter 2: Absolute Value and Radicals

Date	Topic
	2.2 Simplifying Radical Expressions
	Objective:
	Simplify radical expressions with numerical or variable radicands
	2.3 Adding and Subtracting Radical Expressions
	Objective:
	Simplify sums and differences of radical expressions
	2.4 Multiplying and Dividing Radical Expressions Objective:
	Simplify produces and quotients of radical expressions
	2.5 Solving Radical Expressions
	Objectives:
	 Extend strategies for solving linear equations
	Simplify radicals to solve equations involving radicals
, ,	Review
	Test
L	



2.2 Simplifying Radical Expressions

Recall: A radical is an expression involving the root sign:



Multiplication Property	$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	\nearrow natural #S Where $n \in \mathbb{N}$ and
Division Property	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	$a,b,\sqrt[n]{a},\sqrt[n]{b} \in \mathbb{R}$

Review:

1. Express each mixed radical as an entire radical:

a)
$$4\sqrt{3}$$
 b) $x^2\sqrt{x}$

$$=\sqrt{16}\sqrt{3}$$

$$=\sqrt{16}\sqrt{3}$$

$$=\sqrt{16}\sqrt{3}$$

$$=\sqrt{48}$$

$$=\sqrt{16}\sqrt{3}$$

$$=\sqrt{48}$$

$$=\sqrt{16}\sqrt{3}$$

c)
$$2\sqrt[3]{3}$$
 OR/
= $\sqrt[3]{2 \cdot 2 \cdot 2 \cdot 3}$
= $\sqrt[3]{2 \cdot 2 \cdot 2 \cdot 3}$
= $\sqrt[3]{2 \cdot 4}$

2. Convert each entire radical to a mixed radical in simplest form:

a)
$$\sqrt{75}$$
 b) $2\sqrt{48}$
= $\sqrt{25.3}$ = $2\sqrt{16.3}$
= $\sqrt{25.\sqrt{3}}$ = $2\sqrt{16.\sqrt{3}}$
= $5\sqrt{3}$ = $2(4).\sqrt{3}$
= $8\sqrt{3}$

c)
$$\sqrt[3]{x^7}$$

$$=\sqrt[3]{(x \times x)(x \times x)} \times \sqrt[3]{x^3} = x$$

$$=\sqrt[3]{x^3} = x$$

$$=\sqrt[3]{x}$$

$$=\sqrt[3]{x}$$

$$=\sqrt[3]{x}$$

$$=\sqrt[3]{x}$$

Example #1: Arrange from greatest to least

a)
$$5\sqrt{2}$$
, $2\sqrt{5}$, $4\sqrt{3}$
 $\sqrt{25}\sqrt{2}$
 $\sqrt{4}\sqrt{5}$
 $\sqrt{16}\sqrt{3}$
 $=\sqrt{50}$
 $=\sqrt{20}$
 $=\sqrt{48}$
 $=\sqrt{5}\sqrt{2}$, $4\sqrt{3}$, $4\sqrt{3}$

Change to entire radicals

b) $9\sqrt[3]{2}$, $11\sqrt[3]{2}$, $8\sqrt[3]{2}$ 1\ $\sqrt[3]{2}$, $9\sqrt[3]{2}$, $9\sqrt[3]{2}$ Since they are like radicals, compare coefficients

c) $3\sqrt[4]{8}$, $4\sqrt{2}$, $3\sqrt[4]{5}$ 5.0453 5.6568 5.1299 $4\sqrt{2}$, $3\sqrt[4]{5}$, $3\sqrt[4]{8}$ Since the mixed radicals have different indices, use a calculator

Example #2:

a) Write $\sqrt[3]{\frac{-16}{135}}$ as a mixed radical.

$$= \frac{\sqrt[3]{-16}}{\sqrt[3]{135}}$$

$$= \sqrt[3]{-8.2}$$

$$\sqrt[3]{27.5}$$

$$= -2\sqrt[3]{2}$$

$$\sqrt[3]{5}$$

b) Write $-3\sqrt[4]{\frac{2}{27}}$ as an entire radical

All square numbers are greater than or equal to 0, so the expression \sqrt{x} is defined for $x \in \mathbb{R}$, $x \neq 0$. The cube root of a positive number is y = y = 1. The cube root of a negative number is y = y = 1. Therefore, $\sqrt[3]{x}$ is defined for y = 1.

Example #3: For which values of the variable is each radical defined? of thereal #5

b) $\sqrt[4]{-12x^3}$ the 4th root is defined when the radicand is 20 since the coefficient is negative, X^3 must also be negative

Example #4: For which values of the variable is each radical defined? Simplify the radical, if possible.

a)
$$\sqrt{45a^2} \rightarrow \text{since } \sqrt{\Omega^2} = a$$
, the radical is defined for a EIR

b) $\sqrt{-27b^9}$ \rightarrow since $\sqrt{b^9}$ has an odd exponent, b could be t or -, but since we are taking a square root and we have a $-\sqrt{-3(9)(b^8)b}$ negative coefficient, the radical is defined when b ≤ 0 व(वव)(वव)(वव) =36 V-3b, 640

c)
$$\sqrt[4]{7z}$$
 \rightarrow since we have an even index, the radicand must be + $\therefore z \ge 0$

can't be simplified