Block:

1.4 Geometric Series

A geometric series is a <u>Sum</u> of terms that form a geometric sequence.

- A geometric sequence is: 3, 9, 27, 81, ...
- The related geometric series is: 3 + 9 + 27 + 81 + . . .

Sn- the sum of the first "n" terms of a series

The Sum of *n* Terms of an Geometric Series

For the geometric series $t_1 + t_1 r + t_1 r^2 + ... + t_1 r^{n-1}$, the sum of n terms, S_n , is:

$$S_n = \frac{t_1(1-r^n)}{1-r} , \quad r \neq 1$$

where t_1 = the first term

r = the common ratio n = the number of terms

 S_n = the sum of the first n terms

Example #1: Determine the sum of the first 12 terms of this geometric series:

Example #2: The sum of the first 14 terms of a geometric series is 16 383. The common ratio is -2. Determine the 1st term.

$$S_{14} = 16383$$

$$S_{n} = \frac{t_{1}(1-r^{n})}{1-r}$$

$$t_{1} = ?$$

$$r = -2$$

$$n = 14$$

$$3 \times 16383 = \frac{t_{1}(1-(-2)^{14})}{1-(-2)}$$

$$3 \times 16383 = \frac{t_{1}(-16383)}{3}$$

$$\frac{49149}{-16383} = \frac{t_{1}(-16383)}{-16383}$$

Name:	Block:
-------	--------

Example #3: Calculate the sum of this geometric series: -3-15-75-...-46875

Example #4: The NCAA basketball tournament (March Madness) starts with 64 teams. The winners of each game continue to play until a final match determines the champion. What is the total number of games that will be played during the tournament?

There are two teams that play every game. : Round one has $\frac{64}{2} = 32$ games Round two has $\frac{32}{2} = 16$ games

: the final round has one match:

: the final roun

$$t_1=32$$
Find "n":

 $t_1=\frac{1}{2}$
 $t_2=\frac{1}{2}$
 $t_3=\frac{1}{2}$
Find "n":

 $t_1=\frac{1}{2}$
 $t_2=\frac{1}{2}$
Find "n":

 $t_1=\frac{1}{2}$
Find "

$$S_{n} = \frac{t_{1}(1-r^{n})}{1-r}$$

$$= \frac{32(1-(\frac{1}{2})^{6})}{1-\frac{1}{2}}$$

$$= \frac{32(1-\frac{1}{64})}{\frac{1}{2}}$$

$$= \frac{32(\frac{1}{64})}{\frac{1}{2}}$$

$$= \frac{32(\frac{1}{64})}{\frac{1}{2}}$$