1.3 Geometric Sequences

A geometric sequence is a sequence of terms where the <u>ratio</u>
of consecutive terms is a <u>constant</u>. Therefore, each term is formed by <u>multiplying</u> the previous term by this constant, referred to as the <u>common ratio</u>

Example: 3, 6, 12, 24, ... Find the common ratio $r = \frac{12}{3}$ $r = \frac{12}{6}$ $r = \frac{24}{12}$ = 2 = 2

NOTE: The common ratio can be found by dividing any term by the preceding term.

Consider the sequence 2, -6, 18, -54, ... r = -3 $t_1 = 2$ $t_2 = 2(-3) = -6$ $t_3 = 2(-3)(-3)$ $t_4 = 2(-3)(-3)(-3)$ $t_1 = 2(-3)(-3)(-3)$ $t_2 = 2(-3)(-3)(-3)$ $t_3 = 2(-3)(-3)(-3)$ $t_4 = 2(-3)(-3)(-3)$ $t_5 = 2(-3)(-3)(-3)$ $t_7 = 0$ The general term of a geometric sequence is: $t_7 = t_1 \cdot t_7$ $t_7 = t_7 \cdot t_7$

Geometric sequences can be divergent or convergent.

- 2,8,32,128,... is <u>divergent</u> because the terms do not approach a constant value
- $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{32}, \dots$ is <u>convergent</u> because the terms approach a constant value (in this case zero)

Name:		Block:	
-------	--	--------	--

Example #1: Given the geometric sequence: 5, 10, 20, 40, ...

a) Find an expression for the general term.

$$t_{n} = t_{1} \cdot r_{n-1}$$
 $t_{n} = 5$
 $t_{n} = 5(2)^{n-1}$
 $t_{n} = 5(2)^{n-1}$

b) Find the 10th term.

$$t_{n} = 5(2)^{n-1}$$
 $+$ BEDMASX
 $t_{10} = 5(2)^{9}$
 $= 5(512)$
 $t_{10} = 2560$

Example #2: In a geometric sequence, the third term is 54 and the sixth term is -1458. Determine the values of t_1 and r and list the first three terms of the

sequence.

 $tn = t_1 \cdot r^{n-1}$: 1st three terms! $54 = t_1(-3)^{3-1}$ 6, -18, 54

tz =54 to = -1458

54=t1(-3)2

Example #3: Create a geometric sequence whose 6th term is 27.

*note: there are infinitely many solutions.

: choose a ratio that is a factor of 27

i.e. Y=3

Example #4: In a finite geometric sequence, $t_1 = 7$ and $t_5 = 567$.

a. Determine t_2 and t_6 $t_1 = 7$ $t_1 = 7$ $t_2 = 4$ $t_3 = 4$ $t_4 = 4$ $t_5 = 4$ $t_5 = 4$ $t_6 = 4$ $t_7 = 4$ $t_7 = 4$ $t_8 = 4$

r=+3

b. The last term is 45 927. How many terms are in the sequence?

tn=45927

Name:	Block:
-------	--------

Example #5: A car was purchased for \$15 874. The resale value of the same car three years later was \$13 610. Assuming the depreciation is a geometric sequence, what will be the value of the car 6 years after purchase

$$\frac{$15874}{t_1}$$
 $\frac{13610}{t_2}$ $\frac{13610}{t_3}$ $\frac{1}{t_4}$ $\frac{1}{t_5}$ $\frac{1}{t_7}$ $\frac{1$

$$t_1 = 15874$$
 $t_1 = 13610$
 $t_2 = 15874 \cdot r^{4-1}$
 $t_3 = 13610 = 15874 \cdot r^{3}$
 $t_4 = 13610$
 $t_5 = 15874 \cdot r^{3}$
 $t_5 = 15874$
 $t_7 = 15874$

6 years after purchase is t_7 , n=7 $t_n = t_1 \cdot r^{n-1}$ $t_7 = 15874 \cdot (0.95)^6$ $t_7 = 15874 \cdot (0.95)^6$